Computational Complexity of Atomic Chemical Reaction Networks
نویسندگان
چکیده
Informally, a chemical reaction network is “atomic” if each reaction may be interpreted as the rearrangement of indivisible units of matter. There are several reasonable definitions formalizing this idea. We investigate the computational complexity of deciding whether a given network is atomic according to each of these definitions. Our first definition, primitive atomic, which requires each reaction to preserve the total number of atoms, is to shown to be equivalent to mass conservation. Since it is known that it can be decided in polynomial time whether a given chemical reaction network is mass-conserving [30], the equivalence gives an efficient algorithm to decide primitive atomicity. Another definition, subset atomic, further requires that all atoms are species. We show that deciding whether a given network is subset atomic is in NP, and the problem “is a network subset atomic with respect to a given atom set” is strongly NP-complete. A third definition, reachably atomic, studied by Adleman, Gopalkrishnan et al. [1,22], further requires that each species has a sequence of reactions splitting it into its constituent atoms. We show that there is a polynomial-time algorithm to decide whether a given network is reachably atomic, improving upon the result of Adleman et al. that the problem is decidable. We show that the reachability problem for reachably atomic networks is PSPACE-complete. Finally, we demonstrate equivalence relationships between our definitions and some special cases of another existing definition of atomicity due to Gnacadja [21].
منابع مشابه
Kinetic Mechanism Reduction Using Genetic Algorithms, Case Study on H2/O2 Reaction
For large and complex reacting systems, computational efficiency becomes a critical issue in process simulation, optimization and model-based control. Mechanism simplification is often a necessity to improve computational speed. We present a novel approach to simplification of reaction networks that formulates the model reduction problem as an optimization problem and solves it using geneti...
متن کاملEuclidean Distance Degree for Chemical Reaction Networks
In this paper we investigate the complexity of model selection and model testing in chemical reaction networks by formulating them as Euclidean distance problems. We determine closed form expressions for the Euclidean distance degree of the steady state varieties associated to several different families of toric chemical reaction networks with arbitrarily many reaction sites. We show how our re...
متن کاملRobust Stochastic Chemical Reaction Networks and Bounded Tau-Leaping
The behavior of some stochastic chemical reaction networks is largely unaffected by slight inaccuracies in reaction rates. We formalize the robustness of state probabilities to reaction rate deviations, and describe a formal connection between robustness and efficiency of simulation. Without robustness guarantees, stochastic simulation seems to require computational time proportional to the tot...
متن کاملA Data-Driven Sparse-Learning Approach to Model Reduction in Chemical Reaction Networks
In this paper, we propose an optimization-based sparse learning approach to identify the set of most influential reactions in a chemical reaction network. This reduced set of reactions is then employed to construct a reduced chemical reaction mechanism, which is relevant to chemical interaction network modeling. The problem of identifying influential reactions is first formulated as a mixed-int...
متن کاملIdentification of Conserved Moieties in Metabolic Networks by Graph Theoretical Analysis of Atom Transition Networks
Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a b...
متن کامل